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Section A: Pure Mathematics

1 Let a, b and c be real numbers such that a+ b+ c = 0 and let

(1 + ax)(1 + bx)(1 + cx) = 1 + qx2 + rx3

for all real x. Show that q = bc+ ca+ ab and r = abc.

(i) Show that the coefficient of xn in the series expansion (in ascending powers of x) of
ln(1 + qx2 + rx3) is (−1)n+1Sn where

Sn =
an + bn + cn

n
, (n ⩾ 1).

(ii) Find, in terms of q and r, the coefficients of x2, x3 and x5 in the series expansion (in
ascending powers of x) of ln(1 + qx2 + rx3) and hence show that S2S3 = S5 .

(iii) Show that S2S5 = S7 .

(iv) Give a proof of, or find a counterexample to, the claim that S2S7 = S9 .

2 (i) Show, by means of the substitution u = coshx , that∫
sinhx

cosh 2x
dx =

1

2
√
2
ln

∣∣∣∣∣
√
2 coshx− 1√
2 coshx+ 1

∣∣∣∣∣+ C .

(ii) Use a similar substitution to find an expression for∫
coshx

cosh 2x
dx .

(iii) Using parts (i) and (ii) above, show that∫ 1

0

1

1 + u4
du =

π + 2 ln(
√
2 + 1)

4
√
2

.
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3 (i) The line L has equation y = mx + c, where m > 0 and c > 0. Show that, in the case
mc > a > 0, the shortest distance between L and the parabola y2 = 4ax is

mc− a

m
√
m2 + 1

.

What is the shortest distance in the case that mc ⩽ a?

(ii) Find the shortest distance between the point (p, 0), where p > 0, and the parabola
y2 = 4ax, where a > 0, in the different cases that arise according to the value of p/a.
[You may wish to use the parametric coordinates (at2, 2at) of points on the parabola.]

Hence find the shortest distance between the circle (x − p)2 + y2 = b2, where p > 0
and b > 0, and the parabola y2 = 4ax, where a > 0, in the different cases that arise
according to the values of p, a and b.

4 (i) Let

I =

∫ 1

0

(
(y′)2 − y2

)
dx and I1 =

∫ 1

0
(y′ + y tanx)2 dx ,

where y is a given function of x satisfying y = 0 at x = 1. Show that I − I1 = 0 and
deduce that I ⩾ 0. Show further that I = 0 only if y = 0 for all x (0 ⩽ x ⩽ 1).

(ii) Let

J =

∫ 1

0

(
(y′)2 − a2y2

)
dx ,

where a is a given positive constant and y is a given function of x, not identically zero,
satisfying y = 0 at x = 1. By considering an integral of the form∫ 1

0
(y′ + ay tan bx)2 dx ,

where b is suitably chosen, show that J ⩾ 0. You should state the range of values of a,
in the form a < k, for which your proof is valid.

In the case a = k, find a function y (not everywhere zero) such that J = 0.
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5 A quadrilateral drawn in the complex plane has vertices A, B, C and D, labelled anticlock-
wise. These vertices are represented, respectively, by the complex numbers a, b, c and d.
Show that ABCD is a parallelogram (defined as a quadrilateral in which opposite sides are
parallel and equal in length) if and only if a+c = b+d . Show further that, in this case, ABCD
is a square if and only if i(a− c) = b− d.
Let PQRS be a quadrilateral in the complex plane, with vertices labelled anticlockwise, the
internal angles of which are all less than 180◦. Squares with centres X, Y , Z and T are
constructed externally to the quadrilateral on the sides PQ, QR, RS and SP , respectively.

(i) If P and Q are represented by the complex numbers p and q, respectively, show that X
can be represented by

1
2

(
p(1 + i) + q(1− i)

)
.

(ii) Show that XYZT is a square if and only if PQRS is a parallelogram.

6 Starting from the result that

h(t) > 0 for 0 < t < x =⇒
∫ x

0
h(t) dt > 0 ,

show that, if f ′′(t) > 0 for 0 < t < x0 and f(0) = f ′(0) = 0, then f(t) > 0 for 0 < t < x0.

(i) Show that, for 0 < x < 1
2π,

cosx coshx < 1 .

(ii) Show that, for 0 < x < 1
2π,

1

coshx
<

sinx

x
<

x

sinhx
.
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7 The four distinct points Pi (i = 1, 2, 3, 4) are the vertices, labelled anticlockwise, of a cyclic
quadrilateral. The lines P1P3 and P2P4 intersect at Q.

(i) By considering the triangles P1QP4 and P2QP3 show that (P1Q)(QP3) = (P2Q)(QP4) .

(ii) Let pi be the position vector of the point Pi (i = 1, 2, 3, 4). Show that there exist numbers
ai, not all zero, such that

4∑
i=1

ai = 0 and
4∑

i=1

aipi = 0 . (∗)

(iii) Let ai (i = 1, 2, 3, 4) be any numbers, not all zero, that satisfy (∗). Show that a1+a3 ̸= 0
and that the lines P1P3 and P2P4 intersect at the point with position vector

a1p1 + a3p3

a1 + a3
.

Deduce that a1a3(P1P3)
2 = a2a4(P2P4)

2 .

8 The numbers f(r) satisfy f(r) > f(r + 1) for r = 1, 2, . . . . Show that, for any non-negative
integer n,

kn(k − 1) f(kn+1) ⩽
kn+1−1∑
r=kn

f(r) ⩽ kn(k − 1) f(kn)

where k is an integer greater than 1.

(i) By taking f(r) = 1/r, show that

N + 1

2
⩽

2N+1−1∑
r=1

1

r
⩽ N + 1 .

Deduce that the sum
∞∑
r=1

1
r does not converge.

(ii) By taking f(r) = 1/r3, show that
∞∑
r=1

1

r3
⩽ 11

3 .

(iii) Let S(n) be the set of positive integers less than n which do not have a 2 in their decimal
representation and let σ(n) be the sum of the reciprocals of the numbers in S(n), so for
example σ(5) = 1 + 1

3 + 1
4 . Show that S(1000) contains 93 − 1 distinct numbers.

Show that σ(n) < 80 for all n.
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Section B: Mechanics

9 A particle of mass m is projected with velocity u. It is acted upon by the force mg due to
gravity and by a resistive force −mkv, where v is its velocity and k is a positive constant.
Given that, at time t after projection, its position r relative to the point of projection is given
by

r =
kt− 1 + e−kt

k2
g +

1− e−kt

k
u ,

find an expression for v in terms of k, t, g and u. Verify that the equation of motion and the
initial conditions are satisfied.
Let u = u cosα i + u sinα j and g = −g j, where 0 < α < 90◦, and let T be the time after
projection at which r . j = 0. Show that

uk sinα =

(
kT

1− e−kT
− 1

)
g .

Let β be the acute angle between v and i at time T . Show that

tanβ =
(ekT − 1)g

uk cosα
− tanα .

Show further that tanβ > tanα (you may assume that sinh kT > kT ) and deduce that β > α.

10 Two particles X and Y , of equal mass m, lie on a smooth horizontal table and are connected
by a light elastic spring of natural length a and modulus of elasticity λ. Two more springs,
identical to the first, connect X to a point P on the table and Y to a point Q on the table. The
distance between P and Q is 3a.
Initially, the particles are held so that XP = a, Y Q = 1

2a , and PXY Q is a straight line. The
particles are then released.
At time t, the particle X is a distance a+x from P and the particle Y is a distance a+ y from
Q. Show that

m
d2x

dt2
= −λ

a
(2x+ y)

and find a similar expression involving d2y

dt2
. Deduce that

x− y = A cosωt+B sinωt

where A and B are constants to be determined and maω2 = λ. Find a similar expression for
x+ y.
Show that Y will never return to its initial position.
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11 A particle P of mass m is connected by two light inextensible strings to two fixed points A
and B, with A vertically above B. The string AP has length x. The particle is rotating about
the vertical through A and B with angular velocity ω, and both strings are taut. Angles PAB
and PBA are α and β, respectively.
Find the tensions TA and TB in the strings AP and BP (respectively), and hence show that
ω2x cosα ⩾ g.
Consider now the case that ω2x cosα = g. Given that AB = h and BP = d, where h > d,
show that h cosα ⩾

√
h2 − d2. Show further that

mg < TA ⩽ mgh√
h2 − d2

.

Describe the geometry of the strings when TA attains its upper bound.
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Section C: Probability and Statistics

12 The random variable X has probability density function f(x) (which you may assume is dif-
ferentiable) and cumulative distribution function F(x) where −∞ < x < ∞. The random
variable Y is defined by Y = eX . You may assume throughout this question that X and Y
have unique modes.

(i) Find the median value ym of Y in terms of the median value xm of X.

(ii) Show that the probability density function of Y is f(ln y)/y, and deduce that the mode λ
of Y satisfies f ′(lnλ) = f(lnλ).

(iii) Suppose now that X ∼ N(µ, σ2), so that

f(x) =
1

σ
√
2π

e−(x−µ)2/(2σ2) .

Explain why
1

σ
√
2π

∫ ∞

−∞
e−(x−µ−σ2)2/(2σ2) dx = 1

and hence show that E(Y ) = eµ+
1
2
σ2 .

(iv) Show that, when X ∼ N(µ, σ2),

λ < ym < E(Y ) .
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13 I play a game which has repeated rounds. Before the first round, my score is 0. Each round
can have three outcomes:
1. my score is unchanged and the game ends;
2. my score is unchanged and I continue to the next round;
3. my score is increased by one and I continue to the next round.
The probabilities of these outcomes are a, b and c, respectively (the same in each round),
where a+ b+ c = 1 and abc ̸= 0. The random variable N represents my score at the end of
a randomly chosen game.
Let G(t) be the probability generating function of N .

(i) Suppose in the first round, the game ends. Show that the probability generating function
conditional on this happening is 1.

(ii) Suppose in the first round, the game continues to the next round with no change in score.
Show that the probability generating function conditional on this happening is G(t).

(iii) By comparing the coefficients of tn, show that G(t) = a+ bG(t) + ctG(t) . Deduce that,
for n ⩾ 0,

P (N = n) =
acn

(1− b)n+1
.

(iv) Show further that, for n ⩾ 0,

P (N = n) =
µn

(1 + µ)n+1
,

where µ = E(N).


