Section A: Pure Mathematics

1 Find the limit, as $n \to \infty$, of each of the following. You should explain your reasoning briefly.

(i)
$$\frac{n}{n+1}$$
, (ii) $\frac{5n+1}{n^2-3n+4}$, (iii) $\frac{\sin n}{n}$,

$$(\mathbf{iv}) \ \frac{\sin(1/n)}{(1/n)}, \qquad (\mathbf{v}) \ (\arctan n)^{-1}, \qquad (\mathbf{vi}) \ \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+2}-\sqrt{n}}.$$

2 Suppose that *y* satisfies the differential equation

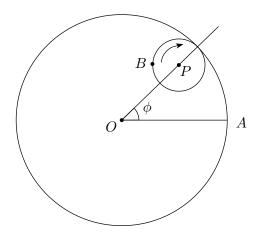
$$y = x \frac{\mathrm{d}y}{\mathrm{d}x} - \cosh\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right). \tag{*}$$

By differentiating both sides of (*) with respect to x, show that either

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 0$$
 or $x - \sinh\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 0.$

Find the general solutions of each of these two equations. Determine the solutions of (*).

3 In the figure, the large circle with centre O has radius 4 and the small circle with centre P has radius 1. The small circle rolls around the inside of the larger one. When P was on the line OA (before the small circle began to roll), the point B was in contact with the point A on the large circle.



Sketch the curve *C* traced by *B* as the circle rolls. Show that if we take *O* to be the origin of cartesian coordinates and the line OA to be the *x*-axis (so that *A* is the point (4,0)) then *B* is the point

 $(3\cos\phi + \cos 3\phi, 3\sin\phi - \sin 3\phi).$

It is given that the area of the region enclosed by the curve C is

$$\int_0^{2\pi} x \frac{\mathrm{d}y}{\mathrm{d}\phi} \,\mathrm{d}\phi,$$

where B is the point (x, y). Calculate this area.

4 \Diamond is an operation which take polynomials in *x* to polynomials in *x*; that is, given a polynomial h(x) there is another polynomial called $\Diamond h(x)$. It is given that, if f(x) and g(x) are any two polynomials in *x*, the following are always true:

- (i) $\Diamond(\mathbf{f}(x)\mathbf{g}(x)) = \mathbf{g}(x)\Diamond\mathbf{f}(x) + \mathbf{f}(x)\Diamond\mathbf{g}(x),$
- (ii) $\Diamond(\mathbf{f}(x) + \mathbf{g}(x)) = \Diamond \mathbf{f}(x) + \Diamond \mathbf{g}(x),$
- (iii) $\Diamond x = 1$

(iv) if λ is a constant then $\Diamond(\lambda f(x)) = \lambda \Diamond f(x)$.

Show that, if f(x) is a constant (i.e., a polynomial of degree zero), then $\Diamond f(x) = 0$.

Calculate $\Diamond x^2$ and $\Diamond x^3$. Prove that $\Diamond h(x) = \frac{d}{dx}(h(x))$ for any polynomial h(x).

5 Explain what is meant by the order of an element *g* of a group *G*.

The set *S* consists of all 2×2 matrices whose determinant is 1. Find the inverse of the element **A** of *S*, where

$$\mathbf{A} = \begin{pmatrix} w & x \\ y & x \end{pmatrix}.$$

Show that *S* is a group under matrix multiplication (you may assume that matrix multiplication is associative). For which elements \mathbf{A} is $\mathbf{A}^{-1} = \mathbf{A}$? Which element or elements have order 2? Show that the element \mathbf{A} of *S* has order 3 if, and only if, w + z + 1 = 0. Write down one such element.

6 Sketch the graphs of $y = \sec x$ and $y = \ln(2 \sec x)$ for $0 \le x \le \frac{1}{2}\pi$. Show graphically that the equation

$$kx = \ln(2\sec x)$$

has no solution with $0 \le x < \frac{1}{2}\pi$ if k is a small positive number but two solutions if k is large. Explain why there is a number k_0 such that

$$k_0 x = \ln(2 \sec x)$$

has exactly one solution with $0 \le x < \frac{1}{2}\pi$. Let x_0 be this solution, so that $0 \le x_0 < \frac{1}{2}\pi$ and $k_0x_0 = \ln(2 \sec x)$. Show that

$$x_0 = \cot x_0 \ln(2 \sec x_0)$$

Use any appropriate method to find x_0 correct to two decimal places. Hence find an approximate value for k_0 .

7 The cubic equation

$$x^3 - px^2 + qx - r = 0$$

has roots a, b and c. Express p, q and r in terms of a, b and c.

(i) If p = 0 and two of the roots are equal to each other, show that

$$4q^3 + 27r^2 = 0.$$

(ii) Show that, if two of the roots of the original equation are equal to each other, then

$$4\left(q - \frac{p^2}{3}\right)^3 + 27\left(\frac{2p^3}{27} - \frac{pq}{3} + r\right)^2 = 0.$$

8 Calculate the following integrals

(i)
$$\int \frac{x}{(x-1)(x^2-1)} \, \mathrm{d}x;$$

(ii)
$$\int \frac{1}{3\cos x + 4\sin x} \,\mathrm{d}x;$$

(iii)
$$\int \frac{1}{\sinh x} \, \mathrm{d}x.$$

9 Let \mathbf{a}, \mathbf{b} and \mathbf{c} be the position vectors of points A, B and C in three-dimensional space. Suppose that A, B, C and the origin O are not all in the same plane. Describe the locus of the point whose position vector \mathbf{r} is given by

$$\mathbf{r} = (1 - \lambda - \mu)\mathbf{a} + \lambda\mathbf{b} + \mu\mathbf{c},$$

where λ and μ are scalar parameters. By writing this equation in the form $\mathbf{r} \cdot \mathbf{n} = p$ for a suitable vector \mathbf{n} and scalar p, show that

$$-(\lambda + \mu)\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) + \lambda \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) + \mu \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = 0$$

for all scalars λ, μ .

Deduce that

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}).$$

Say briefly what happens if A, B, C and O are all in the same plane.

10 Let α be a fixed angle, $0 < x \leq \frac{1}{2}\pi$. In each of the following cases, sketch the locus of z in the Argand diagram (the complex plane):

(i)
$$\arg\left(\frac{z-1}{z}\right) = \alpha$$
,

(ii)
$$\arg\left(\frac{z-1}{z}\right) = \alpha - \pi,$$

(iii) $\left|\frac{z-1}{z}\right| = 1.$

Let z_1, z_2, z_3 and z_4 be four points lying (in that order) on a circle in the Argand diagram. If

$$w = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_4 - z_1)(z_2 - z_3)}$$

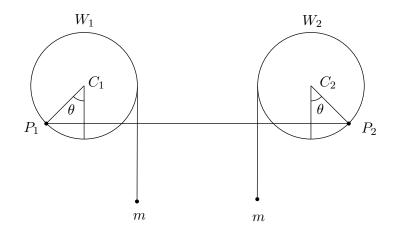
show, by considering $\arg w$, that w is real.

Section B: Mechanics

11 I am standing next to an ice-cream van at a distance *d* from the top of a vertical cliff of height *h*. It is not safe for me to go any nearer to the top of the cliff. My niece Padma is on the broad level beach at the foot of the cliff. I have just discovered that I have left my wallet with her, so I cannot buy her an ice-cream unless she can throw the wallet up to me. She can throw it at speed *V*, at any angle she chooses and from anywhere on the beach. Air resistance is negligible; so is Padma's height compared to that of the cliff. Show that she can throw the wallet to me if and only if

$$V^2 \geqslant g(2h+d).$$

12 In the figure, W_1 and W_2 are wheels, both of radius r. Their centres C_1 and C_2 are fixed at the same height, a distance d apart, and each wheel is free to rotate, without friction, about its centre. Both wheels are in the same vertical plane. Particles of mass m are suspended from W_1 and W_2 as shown, by light inextensible strings would round the wheels. A light elastic string of natural length d and modulus elasticity λ is fixed to the rims of the wheels at the points P_1 and P_2 . The lines joining C_1 to P_1 and C_2 to P_2 both make an angle θ with the vertical. The system is in equilibrium.



Show that

$$\sin 2\theta = \frac{mgd}{\lambda r}.$$

For what value or values of λ (in terms of m, d, r and g) are there

- (i) no equilibrium positions,
- (ii) just one equilibrium position,
- (iii) exactly two equilibrium positions,
- (iv) more than two equilibrium positions?

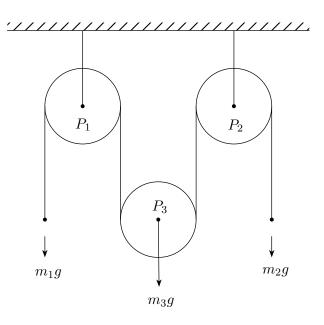
Paper II, 1992 September 29, 2014

13 Two particles P_1 and P_2 , each of mass m, are joined by a light smooth inextensible string of length ℓ . P_1 lies on a table top a distance d from the edge, and P_2 hangs over the edge of the table and is suspended a distance b above the ground. The coefficient of friction between P_1 and the table top is μ , and $\mu < 1$. The system is released from rest. Show that P_1 will fall off the edge of the table if and only if

$$\mu < \frac{b}{2d-b}.$$

Suppose that $\mu > b/(2d - b)$, so that P_1 comes to rest on the table, and that the coefficient of restitution between P_2 and the floor is e. Show that, if $e > 1/(2\mu)$, then P_1 comes to rest before P_2 bounces a second time.

14



In the diagram P_1 and P_2 are smooth light pulleys fixed at the same height, and P_3 is a third smooth light pulley, freely suspended. A smooth light inextensible string runs over P_1 , under P_3 and over P_2 , as shown: the parts of the string not in contact with any pulley are vertical. A particle of mass m_3 is attached to P_3 . There is a particle of mass m_1 attached to the end of the string below P_1 and a particle of mass m_2 attached to the other end, below P_2 . The system is released from rest. Find the tension in the string, and show that the pulley P_3 will remain at rest if

$$4m_1m_2 = m_3(m_1 + m_2).$$

Section C: Probability and Statistics

15 A point moves in unit steps on the *x*-axis starting from the origin. At each step the point is equally likely to move in the positive or negative direction. The probability that after *s* steps it is at one of the points x = 2, x = 3, x = 4 or x = 5 is P(s). Show that $P(5) = \frac{3}{16}$, $P(6) = \frac{21}{64}$ and $(2l + 1) - (1)^{2k}$

$$\mathbf{P}(2k) = \binom{2k+1}{k-1} \left(\frac{1}{2}\right)^2$$

where k is a positive integer. Find a similar expression for P(2k + 1).

Determine the values of s for which P(s) has its greatest value.

16 A taxi driver keeps a packet of toffees and a packet of mints in her taxi. From time to time she takes either a toffee (with probability p) or mint (with probability q = 1 - p). At the beginning of the week she has n toffees and m mints in the packets. On the Nth occasion that she reaches for a sweet, she discovers (for the first time) that she has run out of that kind of sweet. What is the probability that she was reaching for a toffee?