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Section A: Pure Mathematics

1 (i) Given that
f(x) = ln(1 + ex),

prove that ln[f ′(x)] = x − f(x) and that f ′′(x) = f ′(x) − [f ′(x)]2. Hence, or otherwise,
expand f(x) as a series in powers of x up to the term in x4.

(ii) Given that
g(x) =

1

sinhx cosh 2x
,

explain why g(x) can not be expanded as a series of non-negative powers of x but that
xg(x) can be so expanded. Explain also why this latter expansion will consist of even
powers of x only. Expand xg(x) as a series as far as the term in x4.

2 The matrices I and J are

I =

(
1 0
0 1

)
and J =

(
1 1
1 1

)
respectively and A = I+ aJ, where a is a non-zero real constant. Prove that

A2 = I+ 1
2 [(1 + 2a)2 − 1]J and A3 = I+ 1

2 [(1 + 2a)3 − 1]J

and obtain a similar form for A4.

If Ak = I + pkJ, suggest a suitable form for pk and prove that it is correct by induction, or
otherwise.

3 Sketch the curve C1 whose parametric equations are x = t2, y = t3.

The circle C2 passes through the origin O. The points R and S with real non-zero parameters
r and s respectively are other intersections of C1 and C2. Show that r and s are roots of an
equation of the form

t4 + t2 + at+ b = 0,

where a and b are real constants.
By obtaining a quadratic equation, with coefficients expressed in terms of r and s, whose
roots would be the parameters of any further intersections of C1 and C2, or otherwise, show
that O, R and S are the only real intersections of C1 and C2.
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4 A set of curves S1 is defined by the equation

y =
x

x− a
,

where a is a constant which is different for different members of S1. Sketch on the same axes
the curves for which a = −2,−1, 1 and 2.
A second of curves S2 is such that at each intersection between a member of S2 and a
member of S1 the tangents of the intersecting curves are perpendicular. On the same axes
as the already sketched members of S1, sketch the member of S2 that passes through the
point (1,−1).
Obtain the first order differential equation for y satisfied at all points on all members of S1

(i.e. an equation connecting x, y and dy/dx which does not involve a).
State the relationship between the values of dy/dx on two intersecting curves, one from S1

and one from S2, at their intersection. Hence show that the differential equation for the curves
of S2 is

x = y(y − 1)
dy

dx
.

Find an equation for the member of S2 that you have sketched.

5 The tetrahedron ABCD has A at the point (0, 4,−2). It is symmetrical about the plane y+z =
2, which passes through A and D. The mid-point of BC is N . The centre, Y , of the sphere
ABCD is at the point (3,−2, 4) and lies on AN such that −→AY = 3

−−→
Y N. Show that BN = 6

√
2

and find the coordinates of B and C.
The angle AYD is cos−1 1

3 . Find the coordinates of D. [There are two alternative answers for
each point.]

6 Given that In =

∫ π

0

x sin2(nx)

sin2 x
dx, where n is a positive integer, show that In − In−1 = Jn,

where
Jn =

∫ π

0

x sin(2n− 1)x

sinx
dx.

Obtain also a reduction formula for Jn.
The curve C is given by the cartesian equation

y =
x sin2(nx)

sin2 x
,

where n is a positive integer and 0 ⩽ x ⩽ π. Show that the area under the curve C is 1
2nπ

2.
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7 The points P and R lie on the sides AB and AD, respectively, of the parallelogram ABCD.
The point Q is the fourth vertex of the parallelogram APQR. Prove that BR,CQ and DP
meet in a point.

8 Show that
sin(2n+ 1)θ = sin2n+1 θ

n∑
r=0

(−1)n−r

(
2n+ 1

2r

)
cot2r θ,

where n is a positive integer. Deduce that the equation
n∑

r=0

(−1)r
(
2n+ 1

2r

)
xr = 0

has roots cot2(kπ/(2n+ 1)) for k = 1, 2, . . . , n.
Show that

(i)
n∑

k=1

cot2
(

kπ

2n+ 1

)
=

n(2n− 1)

3
,

(ii)
n∑

k=1

tan2
(

kπ

2n+ 1

)
= n(2n+ 1),

(iii)
n∑

k=1

cosec2
(

kπ

2n+ 1

)
=

2n(n+ 1)

3
.

9 The straight line OSA, where O is the origin, bisects the angle between the positive x and
y axes. The ellipse E has S as focus. In polar coordinates with S as pole and SA as the
initial line, E has equation ℓ = r(1+ e cos θ). Show that, at the point on E given by θ = α, the
gradient of the tangent to the ellipse is given by

dy

dx
=

sinα− cosα− e

sinα+ cosα+ e
.

The points on E given by θ = α and θ = β are the ends of a diameter of E. Show that

tan(α/2) tan(β/2) = −1 + e

1− e
.

[Hint. A diameter of an ellipse is a chord through its centre.]
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10 Sketch the curve C whose polar equation is

r = 4a cos 2θ for − 1
4π < θ < 1

4θ.

The ellipse E has parametric equations

x = 2a cosϕ, y = a sinϕ.

Show, without evaluating the integrals, that the perimeters of C and E are equal.
Show also that the areas of the regions enclosed by C and E are equal.
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Section B: Mechanics

11

A

O

B

V

X

Y

AOB represents a smooth vertical wall and XY represents a parallel smooth vertical barrier,
both standing on a smooth horizontal table. A particle P is projected along the table from O
with speed V in a direction perpendicular to the wall. At the time of projection, the distance
between the wall and the barrier is (75/32)V T , where T is a constant. The barrier moves
directly towards the wall, remaining parallel to the wall, with initial speed 4V and with con-
stant acceleration 4V/T directly away from the wall. The particle strikes the barrier XY and
rebounds. Show that this impact takes place at time 5T/8.
The barrier is sufficiently massive for its motion to be unaffected by the impact. Given that
the coefficient of restitution is 1/2, find the speed of P immediately after impact.
P strikes AB and rebounds. Given that the coefficient of restitution for this collision is also
1/2, show that the next collision of P with the barrier is at time 9T/8 from the start of the
motion.
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12

P

θ

O
b

b

A smooth hemispherical bowl of mass 2m is rigidly mounted on a light carriage which slides
freely on a horizontal table as shown in the diagram. The rim of the bowl is horizontal and
has centre O. A particle P of mass m is free to slide on the inner surface of the bowl. Initially,
P is in contact with the rim of the bowl and the system is at rest. The system is released and
when OP makes an angle θ with the horizontal the velocity of the bowl is v? Show that

3v = aθ̇ sin θ

and that
v2 =

2ga sin3 θ

3(3− sin2 θ)
,

where a is the interior radius of the bowl.
Find, in terms of m, g and θ, the reaction between the bowl and the particle.



Paper III, 1992 September 13, 2014 8

13

πb

C

A

Q

O

P

2b

b

A uniform circular disc of radius 2b,massm and centreO is free to turn about a fixed horizontal
axis through O perpendicular to the plane of the disc. A light elastic string of modulus kmg,
where k > 4/π, has one end attached to a fixed point A and the other end to the rim of
the disc at P . The string is in contact with the rim of the disc along the arc PC, and OC is
horizontal. The natural length of the string and the length of the line AC are each πb and
AC is vertical. A particle Q of mass m is attached to the rim of the disc and ∠POQ = 90◦

as shown in the diagram. The system is released from rest with OP vertical and P below O.
Show that P reaches C and that then the upward vertical component of the reaction on the
axis is mg(10− πk)/3.
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14

P

B

θ

Q

O
x

y

b

b

A horizontal circular disc of radius a and centre O lies on a horizontal table and is fixed to it so
that it cannot rotate. A light inextensible string of negligible thickness is wrapped round the
disc and attached at its free end to a particle P of mass m. When the string is all in contact
with the disc, P is at A. The string is unwound so that the part not in contact with the disc is
taut and parallel to OA. P is then at B. The particle is projected along the table from B with
speed V perpendicular to and away from OA. In the general position, the string is tangential
to the disc at Q and ∠AOQ = θ. Show that, in the general position, the x-coordinate of P
with respect to the axes shown in the figure is a cos θ + aθ sin θ, and find y-coordinate of P .
Hence, or otherwise, show that the acceleration of P has components aθθ̇2 and aθ̇2 + aθθ̈
along and perpendicular to PQ, respectively.
The friction force between P and the table is 2λmv2/a, where v is the speed of P and λ is a
constant. Show that

θ̈

θ̇
= −

(
1

θ
+ 2λθ

)
θ̇

and find θ̇ in terms of θ, λ and a. Find also the tension in the string when θ = π.
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Section C: Probability and Statistics

15 A goat G lies in a square field OABC of side a. It wanders randomly round its field, so that
at any time the probability of its being in any given region is proportional to the area of this
region. Write down the probability that its distance, R, from O is less than r if 0 < r ⩽ a, and
show that if r ⩾ a the probability is(

r2

a2
− 1

) 1
2

+
πr2

4a2
− r2

a2
cos−1

(a
r

)
.

Find the median of R and probability density function of R.
The goat is then tethered to the corner O by a chain of length a. Find the conditional proba-
bility that its distance from the fence OC is more than a/2.

16 The probability that there are exactly nmisprints in an issue of a newspaper is e−λλn/n!where
λ is a positive constant. The probability that I spot a particular misprint is p, independent of
what happens for other misprints, and 0 < p < 1.

(i) If there are exactly m+n misprints, what is the probability that I spot exactly m of them?

(ii) Show that, if I spot exactly m misprints, the probability that I have failed to spot exactly
n misprints is

(1− p)nλn

n!
e−(1−p)λ.


